101 research outputs found

    Aspiration Dynamics of Multi-player Games in Finite Populations

    Full text link
    Studying strategy update rules in the framework of evolutionary game theory, one can differentiate between imitation processes and aspiration-driven dynamics. In the former case, individuals imitate the strategy of a more successful peer. In the latter case, individuals adjust their strategies based on a comparison of their payoffs from the evolutionary game to a value they aspire, called the level of aspiration. Unlike imitation processes of pairwise comparison, aspiration-driven updates do not require additional information about the strategic environment and can thus be interpreted as being more spontaneous. Recent work has mainly focused on understanding how aspiration dynamics alter the evolutionary outcome in structured populations. However, the baseline case for understanding strategy selection is the well-mixed population case, which is still lacking sufficient understanding. We explore how aspiration-driven strategy-update dynamics under imperfect rationality influence the average abundance of a strategy in multi-player evolutionary games with two strategies. We analytically derive a condition under which a strategy is more abundant than the other in the weak selection limiting case. This approach has a long standing history in evolutionary game and is mostly applied for its mathematical approachability. Hence, we also explore strong selection numerically, which shows that our weak selection condition is a robust predictor of the average abundance of a strategy. The condition turns out to differ from that of a wide class of imitation dynamics, as long as the game is not dyadic. Therefore a strategy favored under imitation dynamics can be disfavored under aspiration dynamics. This does not require any population structure thus highlights the intrinsic difference between imitation and aspiration dynamics

    Evolution of Global Cooperation in Multi-Level Threshold Public Goods Games With Income Redistribution

    Get PDF
    Income redistribution is a feasible means to adjust the income among individuals, which could reduce the gap between the rich and the poor and realize the social equity. By means of taxation and public services, the income could be transferred from some individuals to others directly or indirectly. We study how income redistribution affects the evolution of global cooperation through proposing a multi-level threshold public goods game model and introducing two kinds of income redistribution mechanisms. We find that both of the income redistribution mechanisms promote global cooperation. Furthermore, the global income redistribution is more in favor of the emergence of global cooperative behaviors than the local income redistribution mechanism. On the other hand, the fixation time of global cooperation is sharply shortened after introducing income redistribution mechanisms. In threshold public goods games, only when the amount of collected public goods reaches a certain threshold, the income of individuals can be guaranteed. Hence, the influences of thresholds of different levels on strategies are investigated in the paper

    Impact of key parameters on far-field temporary plugging and diverting fracturing in fractured reservoirs: A 2D finite element study

    Get PDF
    Temporary plugging and diverting fracturing technology is of utmost importance in stimulating fractured reservoirs. However, studies investigating the mechanisms of new fracture initiation and propagation during far-field temporary plugging and diverting fracturing have been scarce, and the optimal technique parameters are still unknown. To address this issue, a two-dimensional fracturing model is developed via the finite element method in this work, which simulates the temporary plugging effect using the equivalent viscosity temporary blockage method and the unrestrained growth of hydraulic fractures by globally embedding the cohesive element of zero-thickness. Then, some key parameters for far-field temporary plugging and diverting fracturing in fractured reservoirs are discussed and some interesting insights are given. Firstly, a lower-permeability plugging zone expedites the pressure increase within the fracture, thereby boosting the probability of achieving temporary plugging and diverting fracturing. The size of the plugging zone significantly impacts the pressure increase within the fracture. Secondly, the plugging position should be determined considering the density and arrangement of natural fractures in the layer, and the temporary plugging construction should be performed after maximizing the elongation of initial hydraulic fracture. Thirdly, an increase in fluid viscosity and injection displacement promotes the pressure rise inside the fracture. Nonetheless, the impact of injection displacement on temporary plugging and diverting fracturing surpasses that of fluid viscosity. Overall, the established model can inform the design of temporary plugging and diverting fracturing in fractured reservoirs.Document Type: Original articleCited as: Liu, P., Lou, F., Du, J., Chen, X., Liu, J., Wang, M. Impact of key parameters on far-field temporary plugging and diverting fracturing in fractured reservoirs: A 2D finite element study. Advances in Geo-Energy Research, 2023, 10(2): 104-116. https://doi.org/10.46690/ager.2023.11.0

    Transcriptional control of Flt3 ligand targeted by fluorouracil-induced Egr-1 promoter in hematopoietic damage

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Ionizing radiation (IR) activate the early growth response-1 (Egr-1) promoter by production of radical oxygen intermediates (ROIs). Egr-EF, an expression vector pCIneo containing Egr-1 promoter cloned upstream of the cDNA for Flt3 ligand, was used to treat hematopoietic damage. 5-fluorouracil, a commonly used chemotherapeutic agent, cause tumor cell death by producing DNA damage and generating ROIs. We therefore hypothesized that clinically employed chemotherapeutic agents that increase ROIs could also be employed to activate Egr-EF in a chemoinducible gene therapy strategy. The goal of this study was to explore the effect of Flt3 Ligand gene transcription regulated by fluorouracil-induced Egr-1 promoter on hematopoietic recovery.</p> <p>Methods</p> <p>Human Flt3 Ligand (FL) cDNA and enhanced green fluorescent protein (EGFP) cDNA were linked together with IRES and inserted into the expression vector pCI-neo under control of the Egr-1 promoter (Egr-EF). The vector was transfected into the HFCL human bone marrow stromal cell line, and these cells were exposed to 5-FU, a chemotherapeutic drug. Expression of FL by HFCL/EF cells after 5-FU treatment was determined with ELISA, western blot and RT-PCR assays. In addition, the effect of FL from HFCL/EF cell culture supernatants on growth of CD34<sup>+ </sup>cells from cord blood was also studied. HFCL/EF cells were injected into CB-17 combined immunodeficient (SCID) mice with B16 melanoma. 5-FU was given three days after injection of the HFCL/EF cells. In the recipient mice, white blood cell levels in peripheral blood and expression of EGFP and FL in human stromal cells were measured. Tumor volumes in tumor-bearing mice were also measured.</p> <p>Results</p> <p>5-FU treatment increased EGFP levels and secreted FL levels in HFCL/EF cells. Supernatants from HFCL/EF cell cultures treated with 5-FU increased CD34<sup>+ </sup>cell growth significantly. HFCL/EF exhibited an increase in the number of white blood cells after chemotherapy.</p> <p>Conclusion</p> <p>The data presented here support the use of transcriptional control mediated by chemoinducible gene therapy to reduce hematopoietic injury associated with 5-FU.</p

    The combination of 2d layered graphene oxide and 3d porous cellulose heterogeneous membranes for nanofluidic osmotic power generation

    Get PDF
    Salinity gradient energy, as a type of blue energy, is a promising sustainable energy source. Its energy conversion efficiency is significantly determined by the selective membranes. Recently, nanofluidic membrane made by two-dimensional (2D) nanomaterials (e.g., graphene) with densely packed nanochannels has been considered as a high-efficient membrane in the osmotic power generation research field. Herein, the graphene oxide-cellulose acetate (GO–CA) heterogeneous membrane was assembled by combining a porous CA membrane and a layered GO membrane; the combination of 2D nanochannels and 3D porous structures make it show high surface-charge-governed property and excellent ion transport stability, resulting in an efficient osmotic power harvesting. A power density of about 0.13 W/m2 is achieved for the sea–river mimicking system and up to 0.55 W/m2 at a 500-fold salinity gradient. With different functions, the CA and GO membranes served as ion storage layer and ion selection layer, respectively. The GO–CA heterogeneous membrane open a promising avenue for fabrication of porous and layered platform for wide potential applications, such as sustainable power generation, water purification, and seawater desalination

    A Cost-Effective In Situ Zooplankton Monitoring System Based on Novel Illumination Optimization

    Get PDF
    A cost-effective and low-power-consumption underwater microscopic imaging system was developed to capture high-resolution zooplankton images in real-time. In this work, dark-field imaging was adopted to reduce backscattering and background noise. To produce an accurate illumination, a novel illumination optimization scheme for the light-emitting diode (LED) array was proposed and applied to design a lighting system for the underwater optical imaging of zooplankton. A multiple objective genetic algorithm was utilized to find the best location of the LED array, which resulted in the specific illumination level and most homogeneous irradiance in the target area. The zooplankton imaging system developed with the optimal configuration of LEDs was tested withDaphnia magnaunder laboratory conditions. The maximal field of view was 16 mm x 13 mm and the optical resolution was 15 mu m. The experimental results showed that the imaging system developed could capture high-resolution and high-definition images ofDaphnia. Subsequently,Daphniaindividuals were accurately segmented and their geometrical characters were measured by using a classical image processing algorithm. This work provides a cost-effective zooplankton measuring system based on an optimization illumination configuration of an LED array, which has a great potential for minimizing the investment and operating costs associated with long-term in situ monitoring of the physiological state and population conditions of zooplankton

    Soil diazotrophic abundance, diversity, and community assembly mechanisms significantly differ between glacier riparian wetlands and their adjacent alpine meadows

    Get PDF
    Global warming can trigger dramatic glacier area shrinkage and change the flux of glacial runoff, leading to the expansion and subsequent retreat of riparian wetlands. This elicits the interconversion of riparian wetlands and their adjacent ecosystems (e.g., alpine meadows), probably significantly impacting ecosystem nitrogen input by changing soil diazotrophic communities. However, the soil diazotrophic community differences between glacial riparian wetlands and their adjacent ecosystems remain largely unexplored. Here, soils were collected from riparian wetlands and their adjacent alpine meadows at six locations from glacier foreland to lake mouth along a typical Tibetan glacial river in the Namtso watershed. The abundance and diversity of soil diazotrophs were determined by real-time PCR and amplicon sequencing based on nifH gene. The soil diazotrophic community assembly mechanisms were analyzed via iCAMP, a recently developed null model-based method. The results showed that compared with the riparian wetlands, the abundance and diversity of the diazotrophs in the alpine meadow soils significantly decreased. The soil diazotrophic community profiles also significantly differed between the riparian wetlands and alpine meadows. For example, compared with the alpine meadows, the relative abundance of chemoheterotrophic and sulfate-respiration diazotrophs was significantly higher in the riparian wetland soils. In contrast, the diazotrophs related to ureolysis, photoautotrophy, and denitrification were significantly enriched in the alpine meadow soils. The iCAMP analysis showed that the assembly of soil diazotrophic community was mainly controlled by drift and dispersal limitation. Compared with the riparian wetlands, the assembly of the alpine meadow soil diazotrophic community was more affected by dispersal limitation and homogeneous selection. These findings suggest that the conversion of riparian wetlands and alpine meadows can significantly alter soil diazotrophic community and probably the ecosystem nitrogen input mechanisms, highlighting the enormous effects of climate change on alpine ecosystems
    • …
    corecore